

Analysis of Netflix’s

security framework for

‘Watch Instantly’ service

Pomelo, LLC Tech Memo
March – April 2009

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 2 of 18

Table of Contents

A brief introduction and methodology ..3

Security requirements, control mechanisms, and distributed architecture.......4

Step by Step Walkthrough of a typical playback session....................................7

User Authentication ...7
Device Authorization ...8
Instruction Fetching..9
License Acquisition .. 11
Playback... 14

External devices.. 16

Summary of important URIs and security measures .. 18

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 3 of 18

A brief introduction and methodology

Netflix’s video-on-demand service offers its subscribers the possibility to

watch over 12,000 titles online through their Internet connection. It works on a
PC/Mac with a browser-based player created by Netflix (written in Microsoft’s
Silverlight), or via a Netflix-ready external player such as a Roku Box, an Xbox
360, the Samsung Blu-ray player, or any other Netflix-enabled device.

Both kinds of players (browser-based and external) communicate with a set of

Netflix servers that enforce security constraints, provide playback information,
and stream the video files to the player. That communication is based on the
HTTP and HTTPS protocols, and the message exchange can be observed at
different times during playback and be used to make inferences about the kinds
of mechanisms that Netflix must have in place in order to provide a secure video
experience.

Our analysis was centered on the browser-based playback experience. We

created a new Netflix account and observed the message exchange using Firefox
and Tamper Data, a Firefox plug-in that traps HTTP and HTTPS requests and
responses to/from the server and displays their content, headers, and other
useful information1.

We also studied briefly the behavior of external players. Precisely because

those interactions occur outside of a web browser, we were unable to use any
high-level tools such as Tamper Data to analyze the message exchanges. We had
to rely instead on Unix packet sniffers (mainly tcpdump and Wireshark), which
provide less detailed information and, in particular, make it much harder to
decrypt HTTPS messages (especially since in these cases the key is locked inside
the device!). Even though we were unable to analyze the messages as deeply as
for the browser-based players, we still were able to detect many similarities and
few differences between browser-based and non-browser based players, and we
detail them at the end of this report.

1 Thanks to Adam Judson, the creator of Tamper Data, for his tool and for the

help he provided during this exercise.

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 4 of 18

Security requirements, control mechanisms, and
distributed architecture

Netflix concerns, from a security point of view, are:

• That only users with the correct (unlimited) plan can access content
• That users don’t share their account information with others
• That the video is only accessible from within the US, due to licensing

restrictions
• That the video content cannot be redistributed and played at a later time

Those restrictions are enforced by a set of coordinated mechanisms:

• By requesting user authentication before playing the video,
• By allowing a maximum of six playback devices (browsers, Roku, etc.) per

account,
• By rejecting requests that come from IP addresses outside of the US range,
• By encrypting the video content, and
• By providing unique decryption keys per movie and device

The security checks take place over the duration of the playback experience,

and delegated to several different Netflix components and servers, each with
distinct responsibilities. The following diagram shows the steps required to play
a video on Netflix (slightly out of order, for clarity), the different servers
involved in each process, and their respective responsibilities.

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 5 of 18

Security responsibilities are also distributed on the client side, between the
browser (which stores and sends cookies), the Netflix player (which follows the
playback and security protocols described above), the Microsoft Silverlight plug-
in in which the player is implemented (which prevents cross-site scripting and
makes sure that the player only talks to Netflix servers), and a proprietary
Microsoft DRM component (which gets an individualized key for each player
and coordinates with the License server to acquire keys that are unique to the
movie and the player).

This architecture provides several advantages:

• Because all playback devices are registered and associated with an

account, Netflix can prevent abusive users from sharing their credentials
with others; if they do so, their account will quickly run out of the
maximum of allowed devices. (Note that here a device corresponds to a
user on a PC/Mac, or a Roku, Blu-ray, etc. external device. Two browsers
on the same machine/user are one device, but two users on the same
machine are considered to be two separate devices.)

• The encryption of the video files ensures that only players with

knowledge of the key and the decryption algorithm (proprietary Microsoft
technology) can view them.

• If one of those decryption keys is compromised then the security threat is

minor, because the keys are individualized and can only be used by one
player.

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 6 of 18

• Thanks to this distribution of tasks, different servers and client
components can focus on the particular constraints that they have to
enforce, and assume that other constraints are checked somewhere else.
At the same time, and because information is shared between the different
servers (through cookies and extra headers in the HTTP requests), security
on each of these components can be tightened as desired, if/when Netflix
detects abuses or security breaches at a particular point.

• Because all communication takes place using well known HTTP and

HTTPS protocols, Netflix has been able to easily provide their video-on-
demand service to non-browser devices (such as Roku or Xbox 360)
simply by implementing a player on the client side. All these non-browser
players communicate with the same servers and follow more or less the
same protocol as the browser-based player.

• Since all authentication and authorization checks are performed before

playback begins, and since the content of files is encrypted, the streaming
of the video files can be easily delegated to CDNs, gaining increased
bandwidth without compromising security.

• Finally, because the playback experience is controlled through Netflix’s

proprietary player, the enforcement of security constraints can be hidden
almost completely from users. All they are required to do is log into the
site using their account information. The registration and authentication
of the device, and the acquisition of playback licenses, all happen behind
the scenes.

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 7 of 18

Step by Step Walkthrough of a typical playback session

From a logical point of view, we can identify five different conceptual phases

in the successful playback of a movie:

1. User Authentication,
2. Device Authorization,
3. Instruction Fetching,
4. License Acquisition, and
5. Playback.

We give here a brief overview of those phases, and include a list of the HTTP

messages that are exchanged by clients and servers during each phase. For a
complete and detailed trace of those HTTP messages we refer the reader to an
Appendix distributed separately as a text file.

User Authentication

User Authentication involves making sure that the viewer is indeed a Netflix

subscriber and has the right playback privileges. It is mostly dealt with at the
browser level, via cookies. The usual mechanisms apply here: users login to their
accounts and server sets the cookies that it needs (netflixShopperID and
netflixShopperSecret). At this point Netflix also verifies that the user is
visiting from within the United States, by checking the IP address of the request
(in fact, Netflix won't display the Play Movie page if the request is not coming
from the allowed geographical area).

The process at this stage is the following:

1. Browser requests a movie page
 GET http://www.netflix.com/WiPlayer?movieid=xxx
 The server redirects to the login page if the necessary cookies are not

present in the request, and also checks at this point that the request is coming
from a valid geographical area. If everything is OK, it renders the Movie page.

2. Javascript on the browser checks that Silverlight plug-in is installed. If not,

it shows and error message and prompts user to download and install it. Let's
assume it is installed.

3. Browser downloads the Silverlight player from

GET http://www.netflix.com/pages/watchNow/ \
player/silverlight/SLPlayer.xap

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 8 of 18

4. Silverlight player notifies that it's ready to play, by sending a message to
 POST http://www.netflix.com/SilverlightEvent

Device Authorization

Device Authorization is necessary to identify the device that the user is

playing from, and to ensure that the limit of six is not exceeded. It happens once
the Netflix user has been authenticated, and it's handled by the Silverlight
application (the player) by coordinating with a Netflix Control server
(appropriately named https://agmoviecontrol.netflix.com) via a series
of HTTPS POST requests. The Netflix servers verify that the device is already
authorized or, if it's a new device, that the user is not exceeding the maximum
number of devices. The cookies created in the previous step are used here, to
establish a relationship between the device and the Netflix user's account.

The steps involved are:

5. The player requests cross-site interaction with the Netflix controller by

downloading the client access policy file from
 GET https://agmoviecontrol.netflix.com/clientaccesspolicy.xml

6. The browser verifies identity of Netflix controller with Verisign
 POST http://ocsp.verisign.com/

7. The player begins interaction with the Netflix Controller server by sending

a 'ping' command
 POST https://agmoviecontrol.netflix.com/nccp/controller
 Server responds OK

8. The player checks whether the device is new (unregistered) or whether the

registration of this device has expired, by looking for information stored under
the Silverlight plug-in directory (on OS X, this happens to be stored in
~/Library/Application Support/Microsoft/Silverlight)

• If the device is new or its registration has expired, the player sends a

command to the Netflix controller and tries to register or renew the
registration:
POST https://agmoviecontrol.netflix.com/nccp/controller
POST-DATA: 'register', or

 'authenticationrenewal' with ID of device

• If the server responds 'success', processing continues. The device is

now registered for playback, and the registration lasts for a certain
period of time (approx. 12 hours, we think)

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 9 of 18

• The server also checks that the ID of the device, if being renewed,

actually does correspond to the Netflix user account. If not, it returns a
'Auth Renew called using different customer's shopper ID' error
message, and forces the player to send a new 'register' command
with a new device ID. Another possible error from which the player
can recover by sending a new ‘register’ command is 'Sequence
Number out of order'

• The server may also return 'Device Limit Reached', in which case

playback obviously cannot continue: the account already has six
registered devices.

If everything goes well and the device is registered and authorized, the server

sends back a response message along with a CTicket header that the client will
use from now on in all messages with the server. This CTicket must contain (or,
rather, reference) information about both the account and the device, which
means that from now on the Netflix servers will know exactly who it is talking
to.

Instruction Fetching

Instruction Fetching is the step in which the player gets information from the

Netflix servers about how to play the movie, and where to get the files. It
happens after the device has been authorized; the player exchanges a few more
messages with the Netflix Control server and requests among other things the
list of URLs where the streaming files are, which it promptly starts downloading.
Below are the messages exchanged at this phase:

9. The player requests information about the movie and about the user:

 POST https://agmoviecontrol.netflix.com/nccp/controller
 HEADER: X-CTicket=AQAAAA...
 POST-DATA: 'moviemetadata', with movie ID

 POST https://agmoviecontrol.netflix.com/nccp/controller
 HEADER: X-CTicket=AQAAAA...
 POST-DATA: 'usermoviemetadata', with movie ID

The server returns generic information about the movie (title, cast, play time,

etc), and information about previous viewings of this movie. The player then
uses that information to display controls, and also to skip to the point in the
movie where the user left in a previous viewing.

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 10 of 18

10. The player now requests information about the Streaming Servers, and
where to find the streaming files for the movie, via a request to

 POST https://agmoviecontrol.netflix.com/nccp/controller
 HEADER: X-CTicket=AQAAAA...
 POST-DATA: 'authorization' (a misnomer), with movie ID

The server returns a long Manifest message with information about the

location of the streaming files. A portion of that response looks like this:

 <nccp:authorization movie_id="60027274">

 [Information about CDNs, and their relative weight]
 [...]

 <nccp:downloadable>

 <nccp:downloadableid>1811192541</nccp:downloadableid>
 <nccp:size>1067043503</nccp:size>
 <nccp:bitrate>1500</nccp:bitrate>
 <nccp:contentprofile>

playready-vc1ap-none
 </nccp:contentprofile>

 <nccp:downloadurls>

 <nccp:downloadurl>
 <nccp:expiration>1238103632</nccp:expiration>
 <nccp:cdnid>4</nccp:cdnid>
 <nccp:url>
 http://netflix-

274.vo.llnwd.net/s/s1/541/1811192541.wmv
?p=55&e=1238103632&
h=c2ff68a253b2602e9f905479db3e0d3d

 </nccp:url>
 </nccp:downloadurl>

 [… download URLs for other CDNs…]
 </nccp:downloadurls>
 <nccp:resolution>
 <nccp:width>720</nccp:width>
 <nccp:height>404</nccp:height>
 </nccp:resolution>

 </nccp:downloadable>

 [... more <downlodable> elements for different bitrates]

 </nccp:authorization>

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 11 of 18

11. The player starts downloading the streaming files from the locations
specified in the Manifest, using the CDN recommended by the Netflix controller.
(It first has to request cross-site scripting permissions, by issuing a GET request
of the clientaccesspolicy.xml file on the corresponding CDN's root). For
example, the player will request the following file:

 GET http://netflix-480.vo.llnwd.net/s/s0/548/1527065548.wmv \

 /range/0-23?\
 p=55&e=1238027489&h=b10cffcc1a9dfe4591e18aa6fb9c2e86

The files are encoded in .wmv and .wma format2, and are served by L3,

Limelight, or Akamai. (A parameter in the Manifest response from the Netflix
Control server specifies which one of the possible CDN to use).

The video for each movie is stored in a single .wmv file (or, to be more

precise, one .wmv file for each bitrate in which the movie has been encoded). To
stream it, the player sends with its requests an extra HTTP header, Range-
bytes=, specifying the offset within the movie file that it needs to play (on OS X,
Safari doesn’t support the header, and so the range is included in the URI, as
shown above). It is up to the CDN then to use the OS calls to seek within the
large file and return the requested bytes.

At this point there are almost no security checks. The CDNs return the files to

anyone who asks for them (even, for example, if the requests come from outside
the US). There is only one check: the URIs from the Manifest file have an
expiration date, as shown in the URI above (the e parameter, which has different
names and formats depending on the CDN from which the file is delivered).
That expiration date is protected by a hash parameter (the h parameter above),
and is enforced by the CDNs: an attempt to retrieve those files after the
expiration date returns Bad Request.

License Acquisition

License Acquisition is essential to control DRM-encoded video and audio

files. It is the last security step before playback can begin, and it is mostly
handled by the Microsoft PlayReady DRM component of the Silverlight plug-in,
in collaboration with the Netflix License Server (which is also served from
http://agmoviecontrol.netflix.com). As the device tries to play the first
section of the video files downloaded in the previous step, the player realizes
that the content is encoded and that therefore it needs to request a license.

2 There is a third kind of file, .bif, which contains information for the frames
that the player displays as the user tries to fast-forward or rewind during
playback.

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 12 of 18

The License Acquisition process is a bit tricky, and it is at the core of the

security model, so it is important to understand well how it works and it
manages to provide keys that are unique to a given device

The process is mostly handled by the proprietary PlayReady DRM

component in the Silverlight plug-in. Here is how Microsoft explains the
functioning of this technology (except from "Using Silverlight™ DRM, Powered
by PlayReady®, with Windows Media® DRM Content”):

The following steps must be taken for a Silverlight application to acquire and

consume protected content, whether the content is protected using WMDRM or
PlayReady.

Step 1: The Silverlight client application makes a request to the distribution

server for a piece of content. [...] The distribution server receives the request and
sends the content, encrypted, to the client.

Step 2: The client reads the clear header of encrypted content and determines

that the content is encrypted. To decrypt the content, the client must receive a
key from a license server located by a license acquisition URL (LAURL). The
client attempts to get a license by sending a license challenge to the LAURL.

If this is the first time the user has attempted to access protected

content on this machine, individualization must occur before requesting
a license. Individualization is the process of acquiring the
individualization component, a software component embedded into the
Silverlight plug-in, to handle requesting licenses and protecting sensitive
data used in the decryption process. To individualize, the client will send
a request to the Microsoft Individualization Service and is returned the
individualization component. [At that point, the player can proceed to
the next step and request the license from the license server]

Step 3: The license server receives a request for a license from the PlayReady

client, performs the necessary authentication checks to verify identity, executes
business logic to ensure that the user is authorized to consume the requested
content, and issues a license to the client with the appropriate usage rights and
restrictions.

Step 4: The client uses the license to decrypt the content.

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 13 of 18

The following diagram (also from Microsoft’s documentation) gives a
conceptual overview of the process

In Netflix’s case,

• the Distribution Server in the diagram above is one of the streaming
servers on the edge of the CDN,

• the Individualization Server is Microsoft's server (which is located at
http://services.silverlight.microsoft.com/), and the

• PlayReady License Server is the same as the Netflix Control server
(https://agmoviecontrol.netflix.com/nccp/controller).

In concrete terms, these are the messages exchanged at this point:

12. The PlayReady DRM component first checks whether the current

user/machine has been 'individualized', by looking for a directory named DRM/
under the Silverlight plug-in directory.

As explained above, if the machine hasn't been individualized yet, the

PlayReady component requests an individual packet by communicating with a
Microsoft Individualization Server, by passing a ClientInfo parameter that it
computes based on some information that depends on the client machine (the
parameter is always the same on the same machine, regardless of which user is
logged in at the time). For example, it might send

POST http://services.silverlight.microsoft.com/ \

 Silverlight_RTM/default.jolt?Individualize
POST-DATA: ClientInfo=AAAARgAAAAEAAAAHAAAAAQAAADJRA6csu74ALv[…] ==

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 14 of 18

The response from the Microsoft server is approximately 500KB, including an
individualized key for the machine but also the actual PlayReady component
library. The result is saved in a directory named DRM/ under the Silverlight
plug-in directory.

13. The PlayReady DRM component tries to get a license from the Netflix

License server. It sends a message requesting a license for the corresponding
movie, and requesting that the response be encrypted using a public key that the
component generates.

 POST https://agmoviecontrol.netflix.com/nccp/controller
 HEADER: X-CTicket=AQAAAA...
 POST-DATA: 'license', with stream ID

14. The server finds the license for the requested element, encrypts it using

the specified key, and sends it back.

15. The PlayReady DRM component now decrypts the license using its

private key, and uses that license to decrypt the streaming file

In summary: the request to the Netflix License Server includes the public key

of the individualized component, and the response from the server returns the
license key encrypted using the individualized component’s public key. This means
that only that particular player can decode the message (using its private key), to
extract the original license key for the movie and then use it to unlock the
encrypted content.

We have noticed that both the request for the license and response from the

server are constantly changing (even for the same machine, user, device ID, and
movie). This leads us to believe that the Silverlight plug-in is generating a new
Public/Private key pair every time it requests a new license, using perhaps a
combination of its individualization code, the device ID as recorded by Netflix,
and a timestamp.

Playback

Playback can finally take place once these three groups of constraints have

been enforced. The player talks directly to the Netflix Streaming servers, which
in turn assume that all security concerns have already been taken care of by the
other components. Those servers will give content to whoever knows the correct
URIs (but only within a pre-specified window of time), knowing that because
what they deliver is encrypted, only authorized devices with the proper license
will be able to play it. An important advantage of this model is that the

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 15 of 18

streaming servers can be dumb, sitting at the edge of CDNs and delivering
content without almost any intelligence in them.

The messages exchanged are:

16. Once the content has been decrypted, control returns to the Silverlight

player, which starts the playback, and continues downloading. The player
notifies that it's happy by sending another message to

 POST http://www.netflix.com/SilverlightEvent

At this point all the handshake has been performed, and the player continues

to download the streaming files and to show the movie. It also contacts the
Netflix servers regularly (every minute or so) and sends playback data and other
(encrypted) information. The message is :

 POST https://agmoviecontrol.netflix.com/nccp/controller
 HEADER: X-CTicket=AQAAAA...
 POST-DATA: 'logblob', with logging data AND sequence number

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 16 of 18

External devices

As we said before, the playback session is almost identical for browser-based

and external playback devices. Here is what happens when the user plays a
movie from an external device such as a Roku player, an Xbox 360, or a Samsung
Blu-ray player:

1. The first part is establishing the relationship between the box and the user’s

account. After it boots, the box realizes that it is not authorized and it requests a
code from the Netflix server. The server gives it a unique 4-6 alphanumeric string
and the player shows on the TV screen. At that time, the box starts pinging the
Netflix server and sending that code to it. The user has to go with their web
browser to Netflix (/activate, after logging in) and enter the code, which the
Netflix server stores in its database. At some point the Netflix server will get one
of those pings from the box and it will find the corresponding code in the
database, and it can therefore establish the connection between the box and the
user’s account. If, for example, the user enters the code in the browser but turns
off the box, there is no box sending the pings and the registration cannot
complete --the pings are necessary.

2. If after power-on the box detects that it was already registered, it either

accepts the registration information (if it hasn't timed out), or it renews it from
the Netflix server. This is the same as from the browser. This is where it checks
that the device is still active (if not, it goes back to step 1 above), and that the user
doesn't already have six devices on his/her account.

3. What follows is a series of messages between the box and the server to

retrieve account information and get the movies from the user’s Instant Watch
queue. Also, as one moves through the movies in the queue, the box retrieves the
high-definition box art and information about the particular movie (files, where
the user left watching, etc.). This is different from the way it happens from the
browser, where all the relevant messages are exchanged once the movies is
already selected. We believe, however, that the information is the same.

4. Once the movie starts playing, the behavior is similar to that on the

browser. The actual content files are downloaded, and when the box starts
playing it realizes that the files are DRM-protected, talks again to the Netflix
server, and gets a license to play the movie. The content files are exactly the same
as for the Silverlight player: .wmv files, served from the same location from the
same CDNs, and also requested via HTTP using the Range-bytes header. There is
no individualization process here, because (we assume) the box is already
individualized from factory --i.e., it comes with its own key. There's no need to
talk to the Microsoft server.

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 17 of 18

5. Finally, there's also a regular message sent to the server every 30 seconds or

so, with logging information. It is the same as from the browser.

In summary, most of the behavior is similar to that on the browser:

• The device gets information from the Netflix control server
• The device needs to be registered and connected to an account, so that

Netflix can enforce the corresponding constraints
• The content files are exactly the same, live on the same place, and are

requested using the same HTTP methods
• The content files are DRM-protected, and are also decrypted with a

key from the Netflix control server.

There are some differences:

• The registration process is different, of course
• The messages to get information about movies is done once for all the

movies in the queue
• There is no Microsoft server for individualization
• The Netflix control server is no longer their usual server located at

https://agmoviecontrol.netflix.com, but instead a new
server at https://moviecontrol.netflix.com. This “private"
API probably exists so that it's more practical to isolate the external
devices that talk to it. These devices likely have stronger security, such
as protected (physically) keys to sign messages. Netflix can provide
better stability ensuring that only authentic Netflix-capable devices are
the only HTTP clients that can pass through into their web services
stack. The browser software stack is far more exposed.

We'd like to point out again that the messages from/to the Netflix control

server travel via HTTPS, and are therefore encrypted. When we were examining
the same messages from the browser, we had tools to look at the actual requests
after they had been processed and decrypted by the browser. With an external
box all we can do is just sniff raw packets, and without the box's private key we
have no way to decrypt them. In practical terms this means that we don't know
the exact nature and content of the messages; we are just inferring that they
behave in similar ways to what we observed in the browser3.

3 In particular, we don't know whether the license key to play the movie is

unique to each box, unique to each device kind (Blu-ray, Roku, etc.), or global for
everything that talks to https://moviecontrol.netflix.com. We believe
that it's the first case (unique to each box), because they obviously have that
capability for the case of the individualized Silverlight player.

Analysis of Netflix’s security framework for ‘Watch Instantly’ service

Pomelo, LLC Tech Memo – March – April 2009 Page 18 of 18

Summary of important URIs and security measures

Important URIs

URI Purpose
http://www.netflix.com/activate Authorizes external device

http://www.netflix.com/Player/unregister_device De-authorizes a device

http://www.netflix.com/WiPlayer?movieid=xxx Page to watch a movie

http://www.netflix.com/SilverlightEvent

Player POSTs here information
about its state

https://agmoviecontrol.netflix.com/ \
 nccp/controller

Location of Netflix Control server.
Also Netflix License server

http://services.silverlight.microsoft.com/ \
 Silverlight_RTM/default.jolt?Individualize

Location of the Microsoft
Individualization Server

http://netflix-480.vo.llnwd.net/ \
 s/s0/548/1527065548.wmv

Example location of a movie file

What happens if you try to break the security?

If you… Then…
Share account credentials Only up to 6 devices will be allowed
Visit from outside the US The movie page will refuse to load
Playback from an unauthorized device The device will be authorized automatically
Attempt to authorize more than 6 devices Authorization will be rejected, and movie

won’t play
De-authorize a device after playback starts Device will play movies for 12 hours, then be

re-authorized (up to 6 devices)
Access video files directly (via web) Content will be DRM protected, and only a

player with a valid license will play
Somehow acquire the DRM license key The key will be valid for just a single device;

no other device will accept it

